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Task Description: 

➢ Explore Kaldi and its ASR (Automatic Speech Recognition) training process 

 

Task Aims: 

➢ Be familiar with the Kaldi training method 

➢ Learn the ability to use Kaldi to train the ASR system with a customized set-up 

➢ Paper Reading and Source Code reading 

 

Task Preparation: 

➢ Prepare an Ubuntu 16 / 18 Environment with at least 8G RAM (other Linux platforms are not 

tested yet) 

➢ Follow the instruction on http://kaldi-asr.org/doc/ to install Kaldi 

➢ TIMIT dataset (please request a copy from your teacher) 

➢ CALL_2K dataset (please request a copy from your teacher) 

➢ Librispeech dev-clean and test-clean dataset (they can be downloaded from 

http://www.openslr.org/12) 

 

 

TASKS: 

 

TASK 1: (About 3 hours) 

From an overall view, the traditional1 speech recognition system aims to convert an acoustic 

signal captured by a microphone or telephone to a sequence of words as shown in Figure 1.  

 

Figure 1 A Framework of Speech Recognition2 

                                                             
1 Yes, there are speech recognition models other the traditional ones. Recently, several experiments have shown 

that end2end ASR system with neural networks can perform better than traditional ones on a large dataset. 
2 The figure and the following formula are from an open talk on “The Basic Mathematics of Automatic Speech 

Recognition” by Sanjeev Khudanpur, Center for Language and Speech Processing, Johns Hopkins University 

http://kaldi-asr.org/doc/
http://kaldi-asr.org/doc/
http://www.openslr.org/12
http://www.openslr.org/12


Through the figure, we can get that a speech recognition process is like: 

 
𝑾̂  = argmax

𝑾
𝑃(𝑾|𝑨) = argmax

𝑾

𝑃(𝑨|𝑾)𝑃(𝑾)

𝑃(𝑨)
 (1) 

Since 𝑃(𝑨) is constant for a given speech, we only need to maximize the numerator. Therefore, 

we can rewrite the above formula into: 

 𝑾̂  = argmax
𝑾

𝑃(𝑾|𝑨) = argmax
𝑾⏟    
3

𝑃(𝑨|𝑾)⏟    
2

𝑃(𝑾)⏟  
1

 
(2) 

Empirically, we can divide the whole process into three sub-processes. 

➢ Language Model: analyze the probability for each word from the language. 

➢ Acoustic Model: analyze the probability for acoustic realizations of a sequence of words. 

➢ Decoding Model: search the word sequence given a language model and an acoustic model. 

 

After decades of development, each sub-process has gotten a classical solution. For language 

model, N-gram methods is proposed with Markov Assumptions. Hidden Markov Model becomes 

a benchmark for acoustic model. Finite State Automata theory is adopted to maintain a fast 

decoding model. Comparing to the other two, HMM-based acoustic model contributes the most to 

current great progress on ASR and it is generally acknowledged as the most difficult part to 

understand. It is also the focus of our homework😀 

 

All the homework is planned on Kaldi. It is the most prevail open-source speech-related toolkits 

for either the academics or the industries3. 

 

The first task aims to help you learn the basics of Kaldi and tries to teach you how to train a 

simple ASR system with the TIMIT. Kaldi has left us a runnable code with the TIMIT. In order to 

use it, we first need to create a personal environment. A runnable workplace should contain 8 

elements, including a configuration directory (conf), a data directory (data), an experimental 

directory (exp), a local directory for some specific scripts of customized dataset (local), a feature 

directory (literally mfcc), a path declaration (path.sh), and two general libraries from kaldi egs 

(steps & utils). 

Some of them can be directly copied from Installed Kaldi (the related directory is 

your_installation_place/kaldi/egs/timit/s5), such as conf, local, path.sh, steps and utils. But for 

other files, you will have to create on your own. 

A few remarks for the files are as follows 

1. change the “path.sh” based on your workspace 

2. we recommend you use soft links for “steps” and “utils” as Kaldi does (learn about “ln -s” to 

form soft links) 

3. After setting up with your workspace, you can move your TIMIT data into the data directory 

data.（refer to local/timit_data_prep.sh） 

 

To start training process, you need to export Kaldi path to your path. Since the path is somewhat 

temporary (especially when you are working on multi-tasks), a better way is to export the path is 

to use “source path.sh” and “. path.sh” rather than add the kaldi into your PATH. 

                                                             
3 As far as I know, most the company working on speech-related stuff will take insights from Kaldi or directly use 

it as the core of their speech products (e.g. Google, Baidu, Tencent, Mitsubishi… more than you can imagine). A 

great knowledge on it will definitely allows you to gain competitiveness for further work or research. 



To help you understand the whole process, please do not directly use the “timit/run.sh” directly. A 

line by line mode is preferred for further tasks. (You can also create a new .sh file for your own 

code. But remember change the file permission with chmod is necessary 

 

STEP1: Prepare 

Go to your workspace (we use “/home/user/workspace” to stand for it in the follows) and prepare 

for the task 

 

Code for STEP 1:  

cd /home/usr/workspace 

source path.sh 

. path.sh 

 

 

STEP2: prepare for your speech data & lexicon data & language data 

The speech data is the core data for speech recognition; The lexicon data is like a dictionary that 

include a word dictionary (word-pronunciation pairs), phonemes dictionary (types of phonemes); 

The language data is the language model (mostly the language model is trained apart from the text 

of speech data). Mostly, a dataset for ASR is accompanied with a language model. (you can train a 

language model on your own with irislm in Kaldi as well) 

 

For the TIMIT dataset specifically, the three kinds of data are integrated in the dataset, we can 

easily get them from scripts in local. 

 

Before acting with the code, welcome to read the TIMIT description (some docs in the dataset. 

The data collection process is frustrating, and all the datasets are built with great efforts. Therefore, 

I greatly recommend you read the docs with respect). 

 

Code for STEP 2:  

timit = your_timit_place 

local/timit_data_prep.sh $timit 

local/timit_prepare_dict.sh 

utils/prepare_lang.sh --position-dependent-phones false --num-sil-states 3 \ 

data/local/dict "sil" data/local/lang_tmp data/lang 

local/timit_format_data.sh 

 

 

STEP3: Feature Extraction 

We use default MFCC feature as our feature (you are welcome to try other features such as PLP 

http://kaldi-asr.org/doc/feat.html ) 

(you can employ more concurrency jobs if your computer can afford them. Here is a reference for 

http://kaldi-asr.org/doc/feat.html
http://kaldi-asr.org/doc/feat.html


you to learn how to check the CPU number in your computer,  

https://www.cyberciti.biz/faq/check-how-many-cpus-are-there-in-linux-system) 

 

Code for STEP 3:  

for x in train dev test; do 

  steps/make_mfcc.sh --nj 4 data/$x exp/make_mfcc/$x mfcc 

  steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x mfcc 

done 

 

Question 1: what the processes for MFCC in Kaldi are? Read the kaldi source code to find out 

(http://kaldi-asr.org/doc or https://github.com/kaldi-asr/kaldi). Please answer with detailed 

functions in the source C++ code.  

 

 

Extra Credits: what is the difference between Kaldi and the knowledge you learned from your 

teacher? 

 

STEP4: Mono-Phone Training & Decoding 

This step trains a mono-phone model. Firstly, train the mono acoustic model. Next, we make a 

decoding graph with current configuration for test. Then, we decode our development and test 

dataset with the graph. A more detailed explanation is as follows. 

 

An ASR system contains two parts: acoustic modeling and decoding. Acoustic model converts 

speech information to phonetic feature (sometimes accompanied with prosodic features). Its target 

is to accurately recognize phonemes and outputs a posteriorgram that represents posterior 

probabilities for phonemes at each frame. The acoustic model should be dependent on speakers, so 

speaker adaptation methods are often applied at this stage. The decoding model recognizes 

features (i.e. posteriorgram) into words, which employ language models. For most cases in ASR, 

the two processes are not strictly separated, and both are combined into the HCLG where “H” is 

for the Hidden Markov Model, “C” is for the Context-Dependent phonemes, “L” is for the 

Lexicon Dictionary, and “G” is for Grammar/Language Model. The HCLG is a Finite State 

Transducer (you may have heard of it from courses on compliers).4  

 

The HMM model derives from the Markov Chain model. The Markov Chain model (for this 

research, the discrete Markov Chain is applied) is a series of random variables. All the finite 

random processes can be defined as follows: 

Let 𝐗 = 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛  as a sequence of n random variables chosen from a finite discrete set 

𝑂 = {𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑚}. According to the Bayes rule, we have 

 

𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = 𝑃(𝑋1)∏𝑃(𝑋𝑖  | 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖−1)

𝑛

𝑖=2

 (3) 

                                                             
4 If you want to learn more about the information about FSTs reads https://cs.nyu.edu/~mohri/pub/hbka.pdf 

For a detail discussion, please visit 

http://vpanayotov.blogspot.com/2012/06/kaldi-decoding-graph-construction.html 

http://kaldi-asr.org/doc
http://kaldi-asr.org/doc
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://cs.nyu.edu/~mohri/pub/hbka.pdf
https://cs.nyu.edu/~mohri/pub/hbka.pdf
http://vpanayotov.blogspot.com/2012/06/kaldi-decoding-graph-construction.html
http://vpanayotov.blogspot.com/2012/06/kaldi-decoding-graph-construction.html


The Markov Chain model is in first-order with the Markov assumption that 

 𝑃(𝑋𝑖 | 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖−1) =  𝑃(𝑋𝑖  | 𝑋𝑖−1) (4) 

Therefore, for the Markov Chain, Formula (3) can be rewrite as 

 

𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = 𝑃(𝑋1)∏𝑃(𝑋𝑖  | 𝑋𝑖−1)

𝑛

𝑖=2

 (5) 

As the Markov Chain is associated with time-invariant events, the random variable 𝑋𝑖 can be 

represented by finite state 𝑠𝑖. Therefore, for a Markov chain with n states, the parameters of it can 

be summarized as follows: 

 𝑎𝑖𝑗 = 𝑃(𝑠𝑖 = 𝑗 | 𝑠𝑖−1 = 𝑖)   1 ≤ 𝑖, 𝑗 ≤ 𝑛 (6) 

 𝜋𝑖 = 𝑃(𝑠1 = 𝑖)     1 ≤ 𝑖 ≤ 𝑛 (7) 

where 𝑎𝑖𝑗 is the transition probability from state 𝑖 to state 𝑗. And 𝜋𝑖 is the initial probability 

for the start of the Markov chain. The sum of 𝑎𝑖𝑗 and the sum of 𝜋𝑖 are both 1. 

The Markov chain is powerful for building an observable sequence with limited memory cost, but 

the states in the Markov chain only correspond to deterministically observable output. Therefore, 

it cannot infer observable symbols from relevant features. To extend the modeling capacity, a 

non-deterministic process for each state is proposed, which also known as the Hidden Markov 

Model (HMM). Because of the extension, an HMM has more parameter sets as follows. 

 𝑎𝑖𝑗 = 𝑃(𝑠𝑖 = 𝑗 | 𝑠𝑖−1 = 𝑖)   1 ≤ 𝑖, 𝑗 ≤ 𝑛 (8) 

 𝜋𝑖 = 𝑃(𝑠1 = 𝑖)     1 ≤ 𝑖 ≤ 𝑛 (9) 

 𝑏𝑖(𝑘) =  𝑃(𝑋𝑖 = 𝑜𝑘  | 𝑠𝑡 = 𝑖) (10) 

Where 𝑏𝑖(𝑘) is an output function that stands for the probability of emitting 𝑜𝑘 as in state i. The 

sum of 𝑏𝑖(𝑘) is 1 as well. The set of 𝑎𝑖𝑗 and 𝑏𝑖(𝑘) can be annotated as A and B. The model 

can be sum up to Φ(𝐀,𝐁,𝛑) with parameter sets of A, B, and 𝛑. A traditional method for the B 

matrix’s modeling is to apply Gaussian Mixture Model (GMM) trained with Expectation 

Maximization (EM) algorithm. Assume the Gaussian Mixture has M components. Then the 𝑏𝑖(𝑘) 

is given by 

 

𝑏𝑖(𝑘) = ∑  𝑤𝑖𝑘𝑏𝑖𝑘(𝑜𝑡)

𝑀

𝑘=1

 (11) 

And for each mixture component, the probability can be given by 

 

𝑏𝑖𝑘(𝑜𝑡) =
1

2𝜋
𝑛
2  |𝐶𝑖𝑘|

1
2

 𝑒−
1
2
(𝑜𝑡− 𝜇𝑖𝑘)

𝑇𝐶𝑖𝑘
−1(𝑜𝑡− 𝜇𝑖𝑘) (12) 

where  𝜇𝑖𝑘 denotes the mean of the mixture (n is the size of the output symbol set). 𝑤𝑖𝑘 is the 

weight for each mixture. 𝐶𝑖𝑘 is a covariance matrix and it is set to be diagonal assuming the 

elements of feature elements are independent5. 

Given an HMM, the probabilities of an output string in 𝑶 within T speech frames following the 

state sequence 𝜃 = < 𝜃1, 𝜃2, … , 𝜃𝑇 > is 

 

𝑃(𝑶, 𝜃) =  𝜋𝜃1 ∙ 𝑏𝜃1(𝑜1)  ∙  ∏𝑎𝜃𝑡−1𝜃𝑡 ∙ 𝑏𝜃𝑡(𝑜𝑡)

𝑇

𝑡=2

 (13) 

The Viterbi Algorithm was always employed to decode the states. It applies dynamic 

                                                             
5 The main reason for the it is to reduce massive computation cost. 



programming when scanning the HMM graph. For each timestamp, the Viterbi algorithm 

computes probabilities by choosing the optimum previous path. The probability of the Viterbi 

algorithm at time t is 

 𝑉𝑡(𝑖) =  𝑃(𝑋1
𝑡, 𝑆1

𝑡−1, 𝑠𝑡 = 𝑖 |Φ) (14) 

where 𝑋1
𝑡 is the observation till time t, the 𝑆1

𝑡−1 is the previous state sequence. For recursion 

part, the choosing criteria is 

 
𝑉𝑡(𝑗) = Max

1≤𝑖≤𝑁
[𝑉𝑡−1(𝑖) ∙ 𝑎𝑖𝑗]𝑏𝑗(𝑋𝑡) (15) 

 𝐵𝑡(𝑗) = 𝐴𝑟𝑔𝑚𝑎𝑥
1≤𝑖≤𝑁

[𝑉𝑡−1(𝑖) ∙ 𝑎𝑖𝑗] (16) 

Baum-Welch Algorithm is for HMM parameters estimation based on EM. The parameters are 

iteratively re-estimated, and the process is repeated until the change is accepted by a pre-defined 

threshold. Given a parameter set 𝜆 of {𝐀,𝐁, 𝛑}, and 𝜙 as the likelihood function, the target 

function for Baum-Welch Algorithm can be written as 

 𝑄(𝜆,  𝜆̂) =  ∑𝜙(𝜃 | 𝑶, 𝑨, 𝑩) log (𝜙(𝜃, 𝑶| 𝑨̂, 𝑩̂) )

𝜃

 (17) 

Since the output sequences are modeled with GMM, Formula (15) can be written as 

 

𝑄(𝜆,  𝜆̂) =  𝑐 −
1

2
 ∑∑ 𝛾𝑚(𝑡)(𝑐𝑚 + log (|Σ𝑚̂| + (𝑜𝑡 − 𝜇𝑚̂)

𝑇Σ𝑚−1̂(𝑜𝑡 − 𝜇𝑚̂))

𝑀

𝑚=1

𝑇

𝑡=1

 (18) 

where M is the number of Gaussian Mixture components. 𝑐𝑚 and 𝑐 are constants in respect to 𝜆. 

The 𝛾𝑚(𝑡) denotes the probability of the state in mth mixture component at time t. 

 

For acoustic modeling, the basic unit is a phoneme. Instead of words that are various, phonemes 

are accurate, trainable and generalizable for acoustic modeling [1]6. In a mono-phone system, a 

phoneme is divided into three states (beginning, processing, and ending). Each state corresponds 

to an HMM cell. The decoding process is rather complex. If you want to dig more, welcome to 

learn more in http://kaldi-asr.org/doc/hmm.html . 

 

Code for STEP4 4:  

steps/train_mono.sh --nj 4 data/train data/lang exp/mono 

utils/mkgraph.sh data/lang_test_bg exp/mono exp/mono/graph 

steps/decode.sh --nj 4 exp/mono/graph data/dev exp/mono/decode_dev 

steps/decode.sh --nj 4 exp/mono/graph data/test exp/mono/decode_test 

 

 

STEP5: Tri-phone- Delta + Delta-Delta Training 

A mono-phone model (consider each phoneme an individual unit) cannot model the context 

dependency problem given the Markov assumption. Consequently, the context dependency model 

was proposed with the triphone [2]. A triphone model considers neighboring phones as a unit other 

than a single phone. In addition, stress also affects the phonetic feature. Researches have a 

consensus that stressed phonemes tend to have higher pitches, longer duration and more energy 

                                                             
6 There are only less than 50 phonemes for English under different criteria, while the words are countless. 

http://kaldi-asr.org/doc/hmm.html
http://kaldi-asr.org/doc/hmm.html


comparing to unstressed ones [3]. Therefore, vowels are divided into stressed, unstressed, 

secondary stressed in the system as well. 

 

Though triphone has a significant effect on the acoustic model, the computation and memory costs 

are at exponential expenses. Another point is that triphone assumes that the triphone’s context is 

different from each other. However, there are similarities between the effect of neighboring 

phonemes. Therefore, Huang proposed clustering methods based on linguistic questions [4]. 

Through asking questions on linguistic features (such as nasal, sonorant or voiced), triphones are 

compressed into clusters with decision tree. The cluster from tri-phonetic events names senone [5]. 

A simple structure of HMM with senone is defined in Figure 2. There are two sub-HMM models. 

After clustering, the first two phonemes of both HMM are clustered to the same senone while the 

last two are different because of changes in context. By adjusting the decision tree for clustering, 

the number of senones can be modified to a specific range (around thousands) where allow us to 

balance the efficiency and accuracy. 

 

 

Figure 2 An HMM Structure with Senones 

 

Code for STEP 5: 

steps/align_si.sh --boost-silence 1.25 --nj 4 \ 

data/train data/lang exp/mono exp/mono_ali 

# Train tri1, which is deltas + delta-deltas, on train data. 

steps/train_deltas.sh \ 

 2500 15000 data/train data/lang exp/mono_ali exp/tri1 

utils/mkgraph.sh data/lang_test_bg exp/tri1 exp/tri1/graph 

steps/decode.sh --nj 4 exp/tri1/graph data/dev exp/tri1/decode_dev 

steps/decode.sh --nj 4 exp/tri1/graph data/test exp/tri1/decode_test 

 

 

Question 2: As the tri-phone model was proved to be more powerful than mono-phone model, 

why don’t we directly run a tri-phone model? What about delta + delta-delta features? 

 

0 21

0 21

Senone1 Senone2

Senone3

Senone4



Question 3: How is the WER (word error rate) of your model up-to-now? You can find related 

code for showing your model performance from “/kaldi/egs/timit/s5/RESULTS”. (Warning: do not 

directly paste the results in the file to here) 

 

References: 
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TASK 2: (About 1 hours) 

STEP1: MLLR 

In this step, we will dig into some basic speaker adaptation techniques. MLLR is a baseline 

adaptation model that introduced in [1] and developed in [2]. It re-estimates GMM’s parameters 

with linear transformation given a speaker independent acoustic model. There are two forms of 

MLLR, known as unconstrained MLLR and constrained MLLR (cMLLR, also known as fMLLR). 

And both of their estimation processes apply the EM algorithm. Experiments had shown that there 

is not a superior method comparing MLLR and fMLLR [3]. However, for large speech corpora, 

fMLLR simplifies the training process and thus has a better runtime performance. 

When taking the speaker effect for speakers 𝑹 = < 𝑠1, … , 𝑠𝑅 > into the HMM training process, 

the 𝜇𝑚̂ and Σ𝑚̂, are 

 

𝜇𝑚̂ =
∑ ∑ 𝛾𝑟𝑚(𝑡)𝑜𝑟𝑡

𝑇𝑟
𝑡=1

𝑅
𝑟=1

∑ ∑ 𝛾𝑟𝑚(𝑡)
𝑇𝑟
𝑡=1

𝑅
𝑟=1

 (19) 

 

Σ𝑚̂ = 
∑ ∑ 𝛾𝑟𝑚(𝑡)(𝑜𝑟𝑡 − 𝜇𝑚̂)(𝑜𝑟𝑡 − 𝜇𝑚̂)

𝑇𝑇𝑟
𝑡=1

𝑅
𝑟=1

∑ ∑ 𝛾𝑟𝑚(𝑡)
𝑇𝑟
𝑡=1

𝑅
𝑟=1

 (20) 

where 𝛾𝑟𝑚(𝑡) denotes the speaker 𝑟’s probability of the state at time 𝑡 for GMM mixture 𝑚. 

For MLLR, 𝜇𝑚̂ and Σ𝑚̂ are adapted as Formula (21) and Formula (22): 

 𝜇̂ = 𝑾𝜇 + 𝒃 (21) 

 𝛴̂ =  𝑩𝛴𝑩𝑇 (22) 

For fMLLR, 𝜇𝑚̂  and Σ𝑚̂  are changed as Formula (23) and Formula (24) where the 

transformation matrix is constrained as the same 𝑨: 

 𝜇̂ = 𝑨𝜇 + 𝒃 (23) 

 𝛴̂ =  𝑨𝛴𝑨𝑇 (24) 

Speaker Adaptive Training (SAT) can adapt to speaker variations based on the fMLLR. It focuses 

on speaker-dependent transforms. Another advantage of fMLLR is its efficiency in Speaker 

Adaptation Training (SAT). Comparing to MLLR, fMLLR can be fitted into SAT procedures with 

minimum changes [2]. 

The fMLLR is effective for the GMM models, but it is not useable to the DNN structure. In the 

GMM, means and variances have statistical meanings and can be transformed together within the 

model. Unlike the GMM’s parameters, the weight factors in DNN have no well-formed structure 

for the linear transformation. Therefore, when discussing the DNN methods, traditional fMLLR 

cannot work. There are researches that studied similar strategies as fMLLR in a DNN structure [4], 

but it is trained under Cross Entropy criterion other than Maximum Likelihood. Another substitute 

method is to apply fMLLR that estimates with GMM-HMMs to get speaker adapted features. 

However, it has to be admitted that fMLLR are trained assuming with the GMM-HMMs other 

than DNN-HMM. The adapted fMLLR features are not sure to be suitable for the DNN. To put 

forward a “DNN-like” speaker adaptation method, Saon et al. proposed an I-vector method that 

extracts speaker information through EM processes [5]. I-vector method is a popular technique for 

studies in speaker recognition or verification, which aims to find a linear dependence from 



Universal Background Model (UBM, The UBM is a GMM trained with speaker independent 

audio wave. Therefore, it can be considered as speaker independent and a useful verification tool 

to verify whether the feature is speaker dependent) to speaker dependent distribution. The 

estimated I-vectors are cascaded after basic MFCC features in the DNN input feature. 

 

In Kaldi, the MLLR is implemented with a simplified version of MLLT (Maximum Likelihood 

Linear Transform). Explanation of it can be found in http://kaldi-asr.org/doc/transform.html  

 

 

Question 1: Please prove the fact that fMLLR only conducts feature space transform and leaves 

the model parameters still. 

 

Extra Credits: The primary use of I-vector is for speaker identification. Read the paper [6], think 

about why speaker identification tasks only use mean-only adaptation other than consider variance 

and GMM weights? 

 

 

Code for STEP1 1: 

steps/align_si.sh --nj 4 data/train data/lang exp/tri1 exp/tri1_ali 

steps/train_lda_mllt.sh --splice-opts "--left-context=3 --right-context=3" \ 

 2500 15000 data/train data/lang exp/tri1_ali exp/tri2 

utils/mkgraph.sh data/lang_test_bg exp/tri2 exp/tri2/graph 

steps/decode.sh --nj 4 exp/tri2/graph data/dev exp/tri2/decode_dev 

steps/decode.sh --nj 4 exp/tri2/graph data/test exp/tri2/decode_test 

# Align tri2 system with train data. 

steps/align_si.sh --nj 4 --use-graphs true data/train data/lang exp/tri2 

exp/tri2_ali 

# From tri2 system, train tri3 which is LDA + MLLT + SAT. 

steps/train_sat.sh 2500 15000 data/train data/lang exp/tri2_ali exp/tri3 

utils/mkgraph.sh data/lang_test_bg exp/tri3 exp/tri3/graph 

 

steps/decode_fmllr.sh --nj 4 exp/tri3/graph data/dev exp/tri3/decode_dev 

steps/decode_fmllr.sh --nj 4 exp/tri3/graph data/test exp/tri3/decode_test 

 

 

STEP2: Extension-Reading Subspace Gaussian Mixture Model (SGMM) 

 

The Subspace Gaussian Mixture Model (SGMM) is also a GMM method that asks all HMM states 

share the same GMM structure with the same number of Gaussians in each state. A more detailed 

version can be found in a paper from Daniel Povey, the main developer of the Kaldi 

(https://www.danielpovey.com/files/csl10_sgmm_preprint.pdf ) 

 

 

http://kaldi-asr.org/doc/transform.html
http://kaldi-asr.org/doc/transform.html
https://www.danielpovey.com/files/csl10_sgmm_preprint.pdf
https://www.danielpovey.com/files/csl10_sgmm_preprint.pdf


Code for STEP 2: 

steps/align_fmllr.sh --nj 4 data/train data/lang exp/tri3 exp/tri3_ali 

steps/train_ubm.sh 400 data/train data/lang exp/tri3_ali exp/ubm4 

steps/train_sgmm2.sh 7000 9000 data/train data/lang \ 

 exp/tri3_ali exp/ubm4/final.ubm exp/sgmm2_4 

utils/mkgraph.sh data/lang_test_bg exp/sgmm2_4 exp/sgmm2_4/graph 

steps/decode_sgmm2.sh --nj 4 --transform-dir exp/tri3/decode_dev \ 

 exp/sgmm2_4/graph data/dev exp/sgmm2_4/decode_dev 

steps/decode_sgmm2.sh --nj 4 --transform-dir exp/tri3/decode_test \ 

 exp/sgmm2_4/graph data/test exp/sgmm2_4/decode_test 

 

 

Question 2: How is the WER (word error rate) of your model up-to-now? 
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TASK 3: Deep Neural Network (About 6 hours (training takes up 

most of the time)) 

Deep learning has been very popular in recent years. Therefore, we assume that you have learn 

some of it. A basic framework of DNN-HMM for acoustic modeling is shown in Figure 3. Based 

on the senones and the deep structure, it can substitute the GMM part in the traditional 

architecture which brings much improvement with a minimum-modified decoding process [1]. 

 

Figure 3 A DNN-HMM Structure 

 

Rather than some well-known methods of deep learning, this task presents a more specific 

framework adopted by speech processing (i.e. discriminative training). As for the DNN-HMM 

system above, Cross Entropy (CE) loss function is often employed to minimize the phonemes 

prediction error rate. The CE criterion evaluates each speech frame independently. Hence, the 

training process ignores the context information among phonemes series. To address the error, 

discriminative training methods for DNN were proposed. The discriminative criteria for DNN 

include Maximum Mutual Information (MMI), Minimum Phone Error (MPE), boosted MMI 

(BMMI) and Minimum Bayesian Risk (MBR). According to the report from [2], the introduction 

of the criteria can offer an improvement of 1.5% to 2% comparing to DNN with CE loss. 

Traditional discriminative training processes require lattices generated from a preliminary model 

such as GMM-HMMs and DNN-HMMs with CE loss [3]. The lattices are used to provide a 

simple approximation for possible phoneme sequences (or word sequences) which can limit the 

computation cost to a controllable range. A typical MMI loss can be computed as follows. 

The 𝒐𝑚 = < 𝒐1
𝑚, 𝒐2

𝒎, … , 𝒐𝑇𝑚
𝑚 > is defined as the observed sequence of the mth speech where 𝑇𝑚 
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is the frame number, and the 𝒘𝑚 = < 𝒘1
𝑚, 𝒘2

𝒎, … , 𝒘𝑁𝑚
𝑚 > is defined as words’ caption of the mth 

speech where 𝑁𝑚 is the number of words. For the whole training set that has 𝑀 speech samples 

(denoted as 𝐒), the MMI is 

 

ℒ𝑀𝑀𝐼(𝜃; 𝑺)  =  ∑ ℒ𝑀𝑀𝐼(𝜃; 𝒐
𝑚,𝒘𝑚)

𝑀

𝑚=1
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(25) 

where 𝜃 is the parameter set for the model (i.e. DNN) and 𝒔𝑚 is for states in the HMM. 𝜅 is a 

hyperparameter as the acoustic scaling factor. 

According to chain rules, the derivative of ℒ𝑀𝑀𝐼(𝜃; 𝑺) is as Formula (26): 

 

∇𝜃ℒ𝑀𝑀𝐼(𝜃; 𝑺)  =  ∑∑∇𝑧𝑚𝑡ℒ𝑀𝑀𝐼(𝜃; 𝑺)

𝑇
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(26) 

where 𝑧𝑚𝑡 is the input of the final Softmax layer. The computation of 
𝜕𝑧𝑚𝑡

𝜕𝜃
 is the same as CE. 𝒓 

represents the state sequence. 
𝛼𝑡
𝑛𝑢𝑚(𝒓)𝛽𝑡

𝑛𝑢𝑚(𝒓)

∑ 𝛼𝑡
𝑛𝑢𝑚(𝒓)𝑁

𝑟
 denotes the posterior probability vector for 𝒓7. It is 

computed via a forward-backward algorithm (like the Baum-Welch algorithm discussed above) on 

the numerator lattice graph and the denominator lattice graph. The traditional MMI discriminate 

training must apply the lattice, otherwise, the computation cost is huge. However, the lattice also 

introduces some losses in accuracy, and it is still time-consuming. The framework is shown in 

Figure 4. 

 

                                                             
7 The Formula 26 is simplified for interpretation. A full version can be found in [3]. 



 

Figure 4 The MMI Training Process 

 

Question 1: Another popular loss is CTC (Connectionist Temporal Classification). What are the 

weaknesses of CTC compared to discriminative training process? 

 

Question 2: What are the differences between maximum likelihood and discriminative training? 

 

COMPETITION: there are several neural network recipes in Kaldi. Tune hyperparameters for 

different networks (time delay neural networks, deep neural networks, recurrent neural networks 

and chain model) and achieve a best result on TIMIT~ 

 

Reference: 

[1] Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pre-trained deep neural 

networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and 

language processing, 20(1), 30-42. 

[2] Veselý, K., Ghoshal, A., Burget, L., & Povey, D. (2013, August). Sequence-discriminative 
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[3] Povey, D. (2005). Discriminative training for large vocabulary speech recognition (Doctoral 
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Task 4: Train a new dataset on your own (About 4 hours) 

After working so much, let’s train an entirely new dataset on your own. 

1) Create a new workspace  

2) train a tri-phone model with a dataset that combining CALL_2K dataset and Librispeech 

dev-clean dataset (add some self-recorded data is also welcome).  

3) Decode the model with Librispeech dev-test dataset. 

Report the WER to your teacher~  

 


